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Abstract—The flexural behavior of a beam is investigated in an attempt to establish a correlation
between the tensile and bending properties of strain-softening solids. Given the complete uniaxial
stress—strain relations, including the post-peak tension-softening portion, it is possible to predict
the flexural behavior in moment-curvature and load-deflection relations. The results indicate that
strain-softening gives rise to enhanced bending strength in agreement with experimental data.
Conversely, given the bending responses together with the softening characteristics the complete
tensile behavior can be determined. Since bending experiments are easier to perform than uniaxial
tensile tests, this well-defined correlation provides a feasible means to obtain the entire tensile
behavior of strain-softening solids such as concrete, rocks and ceramics,

{. INTRODUCTION

The present paper is concerned with the flexural behavior of a class of strain-softening
solids. It is now well established that many structural materials such as concrete, rocks and
ceramics often display what is called “'strain softening™ behavior. Sce for example Read
and Hegemicer (1984), Bazant (1984), Gopalaratnam and Shah (1985), Shah and Sankar
(1987), Reinhardt (1984), Dougill (1976), Krech (1974), Petersson (1981), Carpinteri (1985)
and Roclfstra and Wittmann (1986). Basically, this means that in a direct tensile (or
compressive) test there is a lincar stress-strain relationship (Hooke's law) until the ultimate
strength (o,,) is reached. In reality, of course, there is a slight non-lincarity prior to reaching
g,., duc to the development of microcracks randomly distributed within the body of the
uniformly stressed solid. Further straining beyond this point results in stress relaxation
which is the strain-softening characteristics of the material. From a physical point of view,
this softening behavior is caused by the coalescence of densed microcracks within a narrow
band (or softening zone width) of material. Outside this localized zone the rest of the
material is effectively undergoing clastic unloading. It is possible to ascribe the decreasing
stress bearing capacity in the softened material as due to the pulling out of aggregates from
cement matrices in the case of concrete (Gopalaratnam and Shah, 1985); and of grain
bridging and pull-out in the case of rocks and oxide ceramics (Mai and Lawn, 1986). One
way to describe the strain concentration of the softening behavior is the adoption of a
stress (a)-crack opening displacement () relationship using a fictitious single crack model
(Reinhardt, 1984 Hillerborg et al,, 1976). Alternatively, an average strain (¢) on the
continuum scale may be defined as representative of the opening displacement of the
microcracks within an effective softening zone width (w,). In this way, an effective stress-
strain constitutive relationship can be adopted in the spirit of the “nonlocal continuum™
concept {(Bazant and Oh, 1983 ; Bazant and Chang, 1984). Of course, the crack opening
displacement in the discrete crack model and the post-peak strain in the continuum model
are then related by § = w,e. The present paper chooses the latter model to describe the
strain-softening behavior.

In studying the fracture of strain-softening solids, knowledge of the tensile o-¢ (or &)
relationship is important, since this yields information on the fracture energy (G,) consumed
in the localized softened zone and also enables the crack growth resistance (R) curve to be
numerically computed (Mai and Lawn, 1986 ; Foote et al., 1986 ; Shah, 1986). In the past,

t On leave from the Department of Mcchanical Enginecring, University of Sydney, Sydney, N.S.W. 2006,
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Fig. 1. Normalized plot of the assumed constitutive law [eqn (1)] with n = 0.2]1 and 4 = 0.0173.
The inscrt is a schematic showing the definitions of the relevant parameters (v, = tensile strength.
£* = elastic strain at o,,. £, = fracture strain and 4 = £%/¢,).

considerable effort has been invested to design proper tensile experimentation in order to
obtain the complete stress-strain curve including the post-peak regime. Particular attention
has been given to specimen grip design, closed-loop strain control and testing machine
stiffness (Gopalaratnam and Shah, 1985). In view of these complications, it is pertinent to
ascertain whether such information can be extracted from bending test data, because
bending experiments are more stable and casier to perform. In this paper we present a new
analysis which establishes the relationship between tensile and bending propertics of a class
of struin-softening solids. It is shown that the bending load -displacement curves can be
analytically predicted if the tensile strain -softening and fracture propertics including the
softening zone width are known (Section 2). Conversely, given the bending curve and the
size of the accompunied fracture process zone development, the entire tensile propertics can
be determined (Section 3). Problems related to load instabilities and bending to tensile
strength ratios as caused by the strain-softening zone width are also discussed.

2. ANALYSIS OF STRAIN-SOFTENING BEHAVIOR IN BENDING

The bending properties (i.c. moment—curvature, load-displacement and stress/strain
distributions, etc,) of 4 uniform rectangular beam exhibiting the localized strain-softening
phenomenon are analyzed in this section within the framework of a simple beam theory.
The fundamental assumptions are given in Section 2.1.

2.1. Basic assumptions
In order to carry out the bending analysis, the constitutive laws for tension and

compression of a beam element must be specified. A revicw on the strain-softening response
of many engineering materials reveals that the stress-strain law follows a power-law function
in the softening regime. The insert of Fig. 1 gives a schematic diagram of such a plot on
which the current analysis is based. When ¢ < £*, where ¢* is the strain at which the softening
behavior begins to develop, the elastic behavior dominates where the stresses vary linearly
from zero to a,,, the maximum tensile stress that the material can sustain. Whene* <& < ¢,
&£, being the separation strain (i.e. the strain at which fracture occurs), the material is in the
strain-softening region where the tensile stress {5) can be expressed empirically in the
following power-law equation as a function of &:
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where ... £%, &; and 1 are material constants. Finally. when the strain exceeds g, complete
separation of the softened material must have taken place.

The compression behavior, on the other hand, will be assumed linearly elastic regardless
of the magnitude of stress, with an identical elastic modulus as in tension (i.e. £ = g,/6%).
This assumption is justifiable in view of the compression strength for many strain-softening
solids is at least an order of magnitude higher than the corresponding tensile strength. For
example, 4, for a typical plain concrete is about 4 MPa in tension (Gopalarathnam and
Shah, 1985}, but about 40 MPa in simple compression (Shah and Sankar, 1987). Accord-
ingly, the compression side of a bent beam is most likely in the elastic regime before fracture
in the tensile zone intervened.

~ In order to formulate the load-point deflection in a general fashion, a segment of width
2w of the softening material is expected to occur in the mid-span of the beam whenever the
strain of the outer-fiber in the tension side reaches £*. For a given material, beam geometry
and loading configuration, this segment is expected to remain fixed (Bazant and Zubelewicz,
1988). In the present analysis, the width 2w is solved from the load-point deflection curve
obtained in a bending experiment. As will be shown later, this localized softening zone
width 2w will have a significant cffect on the stability of the beam.

Also invoked in the present investigation is the well-known Bernoulli-Navier hypoth-
esis wherein planar sections are assumed to remain plane under bending so that no warping
takes place and compatibility requirement is automatically satisfied. The justification for
strain lincarization was first given by MacCollough {1933) in the case of creep deformation,
where he argued that if non-lincar bending strains were allowed to take place (i.c. warping)
then cither each individual clement would respond differently for the same bending moment
or they could not fit coherently together without creating discontinuity (i.c. violation of
compatibility). Recently dircet evidence of lincar strain distribution in a ceramic beam was
provided by Chuang er o, (1987). By putling two rows of identation marks in the midspan
of a four-point bend bar, they were able to show that these two rows remained straight
after a long period of creep deformation. Similar evidence was provided in the case of
composite beams of reinforced conerete and steel -conerete (Barnard and Johnson, 1965},
where the measured strain distributions are always lincar but the corresponding stresses are
non-lincar and discontinuous. A direct observation on the strain field developed in a strain-
softening solid poses an experimental challenge as the localized zone is so small as to render
the meusurements meaningless. However, indirect numerical caleulations using the method
of iterations do confirm this assumption of lincar macrostrain distribution for strain-
softening solids (Foote er al., 1986 ; Wecharatana and Shah, 1983). In view of the similaritics
between strain-softening, creeping and fiber composite materials, in terms of non-lincarity
in stress and physical process involving microcracking and cavitation, coupled with con-
firmation of numerical calculations, we are led to believe that we have provided confidence
in invoking Bernoulli's assumption, at least on the continuum scale, for the case of strain-
softening behavior.

More recently, Bazant and Zubelewicz (1988) provided an exact nonlocal solution for
a strain-softening beam under these two provisions. They derived the boundury conditions
at the interface between the sofiening and the elastic regions and showed that these two
assumptions are good representations of the real matenial behavior when compared to
solutions obtained in local analysis. As the authors have correctly pointed out, some
rescarchers at present do not believe that continuum models with strain-softening can
adequately describe the physical reality. On the other hand. such an objection is clearly
unfounded if a characteristic size w can be defined for the material, representing the crack
band width.

The external loading mode considered in this paper is pertaining only to ¢ > 0, ie.
monotonically increasing displacement rate such as a constant cross-head speed as opposed
to being load-controlled. This loading mode allows full details of the softening behavior to
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be studied. Other loadings such as cyclic mode will not be considered here so as to avoid
the complication of residual stresses.

2.2. Bending analysis

Because of the complexity of the constitutive laws (see Fig. 1). the bending properties
of a beam specimen can be divided into three distinct regions each of which is analyzed
separately in the following sub-sections. The analysis pertains to four-point bend con-
figurations but other geometries of bending can also be equally applied as well.

2.2.1. Elastic regime (1). So long as the outer fiber strains in the inner span of the beam
are less than &*. the beam is fully elastic and the associated deformation is completely
reversible. The bending responses can be predicted within the framework of the conventional
beam theory. At the end of the elastic regime (I) when the outer-fiber tensile strain reaches
¢*. the applied load and the load-point deflection can be expressed in terms of the beam
geometry. o,, and &*, as follows:

Pt = e, BH/(L-]) &)

and

O =2PML 1) (L+2)/(EBI) = je*(L-1)(L+20)/H 3)

where £ is Young's modulus, 2L and 2/ are the major and minor spans, respectively, and
B x H is the cross-sectional arca of the beam. In addition, the uniform curvature K inside
the inner span is

K=2*H 4)

and from ¢gn (2) the corresponding applicd moment is

M = lo,BIl* (5)

since M = \P(L-1).

2.2.2. Strain-softening zone growth regime (11). When the load-point displacement, d,
exceeds o7 defined in egn (3), the beam undergocs a transition from the elastic regime (1)
to the strain-softening zonc growth regime (1), which can be defined as the loading period
in which the outer-fiber strain of the softened material located in the inner span has the
rangc £* < € < £,. Note that the definition here is laid down in terms of strain, regardless
of the level of the applicd load, which may or may not exceed P} depending on the specific
constitutive law. To predict the flexural load versus deflection curve for a given 2w and o-
¢ law (sec Fig. 1) we need to know the moment versus curvature relationship for the softened
beam clement of width 2w. In addition, we can also study the stability of a beam under
constant displacement rate conditions. It will be shown that a critical zone width 2w, exists
below which a sudden precipitious load drop is expected in the load-displacement curve
(see Scction 2.3.).

We begin the analysis of the softened zone by investigating first the normal stress
distribution across the beam depth for an arbitrary curvature K in the regime. Figure 2
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Fig. 2. Schematic of strain and stress distributions across the beam depth in regime (11).

shows the stress and strain distributions across the beam depth. In view of the linearity in
strain (Fig. 2b) as assumed and discussed in Section 2.1, it is easy to show that the elastic
tensile zone size X at a given K is

X=¢*K (6)

from which the range of normalized X in regime (1I) can be determined. Detailed derivations
are given in Appendix A, The results are quoted here:

<x<| (7a)
1+,/G
or
24z, < KH < £4(1+/G) (7b)

based on the requirement that g, > £ > £* at the outer fiber in tension. Here, x = X/H is
the normalized clastic zone size and G is a material parameter defined by

G = A(A+2n=2n)/(n+1) (8)

where n is the exponent of the constitutive eqn (1) and 4 (= £*/e,) is the maximum clastic
strain normalized against the separation strain g, (see the insert of Fig. I). The location of
the neutral axis is at a distance (X + Z) from the tensile face (see Fig. 2) where the softening
zone depth Z is to be determined. For a fixed K, Xis fixed by eqn (6) and Z can be computed
from the following nonlincar algebraic equation

S4B 2B :+D =0 (9a)
where
B =x""'(1+m(l =i) 24" (9b)
and
D’ = (1~2x)8B". {9¢)

Here - = Z/H and eqn (9a) is derived from the condition of horizontal force balance so
that the arca of compressive stress (i.e. total compression force) must be equal to its
counterpart in tension (see Fig. 2¢). Closed-form solutions for Z in terms of X or K are
available only when # is an integer and less than 4. In general, a numerical solution scheme
has to be implemented, and there might be more than one solution. However, numerical
search for the range of X which has physical meaning [eqn (7a)] indicated that only one
solution for Z exists. Further, for small 2 we found an approximate analytical solution:
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Fig. 3. Sketch of the right half of a deformed bend beam consisting of a softened part A8 and a
rigid portion BCD (vertical deflections are exaggerated for clarity).

t=1-2x (10)

to underestimate the softening zone depth by about 9% at the end of the regime (I1) (e
when the crack begins to form at the tensile face of the beam).

Once Z is solved, the position of the neutral axis is fixed for a given X or K. The
bending constitutive law relating M to K can then be worked out by using moment balance
equation M = [ay dy, where p is the distance away from the neutral axis. Thus, we obtain
the following transcendental cquations for the softened material of width 2w

). n:lni—l) \ =
=20 x+2e by 432 =69 m b T T . :
=20+ 200+ 65243 6{1_1} " {IH-I +”+2} {11a)

K = i/x (11b)

where ¢ = | —x—z is the normalized compression zone depth; . # = M/(}o,,BH?) and
K = KHJe, are the non-dimensional moment and curvature, respectively. The range of x
for regime (1) is 24 < k < (1 +/G), since 0.5 € x < A/(1 +/G).

Having obtained the general expressions for the softening zone depth [eqns (9)-(10)]
and bending moment [egn (11)], the terminal values of Z and M at the end of regime (11)
where x = 4/(1 +/G) are readily available. Thus, inside this softened zone width of 2w,
the neutral plane is located at (1 +\/ G) "' from the tensile face of the beam, viz.

T= 12
1+,/G (12)
at the end of regime (II) and
M = Fi(1+G)? (13a)
where
F=3G+2G/Gli—*+3n(1=1)*/(n+2). (13b)

We can now predict the flexural load-displacement curve for a composite beam con-
sisting of a central softening zone of width 2w and an elastic region of length (L ~w) on
either side subject to four-point loading. Clearly, the load-point deflection has contributions
from both the softening and elastic materials. To determine the contribution by the softening
material alone, consider the schematic sketches shown in Fig. 3 where the beam is
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Fig. 4. Schematic of strain and stress distributions in the crack growth regime (IIf).

composed of a softening part (4B) and a rigid material (BCD). AB has the shape of a
circular arc owing to the uniform curvature and BCD is a straight line because of its rigidity.
From the geometry of the deformed beam, the load-point deflection is

., = (L—1) tan [arc sin (}xeq)] (14)

where a chara on the top denotes normalized length against the beam height H (e.g.
L=Lm.

The elastic contribution to total § from the portion of the part BCD can be evaluated
using the method of strength of materials. By assuming BCD to be cantilever beam loaded
by P/2 at C and at the free end D, the deflection can be worked out. The result is

S, = 3icg. M (15)

J={(L—w)' +2(7=) =3(L-w)I—=w) (L -D). (16)

Thus, the total deflection at the load-point is the summation of these two contributions,
J,+0,, namely

d = (L-1) tan [arc sin (Wre,)]+ 3Aco 4. (17

This general expression for 9 is applicable to a composite beam consisting of an elastic and
a softening material. [t is valid not only for regime (II) but also for the crack growth regime
(I1I) to be discussed next.

2.2.3. Crack growth regimet (111). When the tensile edge of softened portion of the
beam reaches &4, a crack will initiate there and the crack growth regime (I11) ensucs. The
term “‘crack™ here is defined as separation of “fiber’ element rather than discontinuity in
the continuum sense. Accordingly, any possible stress concentration near the “crack™ tip
is not considered here.

Figure 4 gives the schematic of stress and strain distributions in this regime. It might
be noted that the stress distribution in the softened zone ahead of a crack as sketched in
Fig. 4(c) is consistent with a blunt crack band model for softening behavior; its usc being
supported by the exact non-local solution as given by Bazant and Zubelewicz (1988). Also,
note that the equality c+x+4= = | no longer holds for this case. Instead, the normalized
crack size a is delined as

t The definition of a *‘crack growth™ regime is strictly incorrect because in addition to crack growth, the
strain softening zone also exists albeit it is decreasing.
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a=l—-¢c—t (18)
where 1 is the (normalized) tensile zone depth (Fig. 4¢) resulting from the assumed strain

distribution (Fig. 4b). Horizontal force balance derived in Appendix B, eqn (BS5), then
dictates that

c=.Gt (19

Setting a = 0 in eqn (18). we obtain the minimum curvature at which the initiation of crack
growth occurs, i.e.

k2 1+/G (20)
for regime (111).

We can also define the effective crack length, a*, as (a+ =) in keeping with the definition
used by many researchers, Thus we have

t=l/x (21a)
a=1=(1+JG)/x 21b)
a* = 1= (i+ JG)/x 21e)

for regime (111) where & > 1+ /G. Further, fracture mechanics analysis permits use of the
apparent stress intensity factor, K, in pure bending as a function of effective crack length
a*:

K, =.4Y(a*) (22a)

where K, = K,/(a,,,\/ll) is the normalized K, and Y is a dimensionless function of a* given
by Tuda e al. (1973):

* =\ *
Y =2 tan (’f—;‘—) [0.923 +0, x99(1 —~sin Eg") ] / cos (“‘2‘ ) (22b)

To obtain the normalized bending moment versus curvature relationship for the soften-
ing material in regime (111), the integral [ o) dy for the stress distribution in Fig. 4¢ has to
be evaluated for .#. Mathematical manipulations given in Appendix B yield the following
analytical expression relating .4 to x:

M = FIK? 23)

where Fis a function of n and 4 already defined in eqn (13b). This is a remarkably simple
equation stipulating the moment-carrying capacity of the beam decayed asymptotically as
the inverse square of deformed curvature. It should be pointed out that the transition point,
& = (1 +/G). which separates regimes (I1) and (II1), can be used to check the correctness
of both analytical eqns (I1a) and {23) and future numerical solutions in both regimes as
they arc independently derived. For example, substituting & = (1 +,/G) in eqn (23), we get
an cxpression for ./ which agrees with that given by eqn (13a). This check assures the
correctness of both eqns (11a) and (23) in regimes (1) and (1), respectively.

2.3. Theoretical results

We have presented in Section 2.2 the necessary equations for describing the flexural
bechaviors of a bcam for all three characteristic regimes. We will now show the theoretical
results using representative values of # = 0.21 and 4 = 0.0173 for a particular polymer
concrete studied by Krause (1980). Figure 1 gives a plot of the normalized stress versus
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Fig. 5. Normalized plot of moment (.#) versus curvature (x) for the strain-softened part of the
beam for n = 0.21 and 4 = 0.0173.

strain relation in simple tension based on eqn (1). The separation strain, g,. is about 58
times the maximum clastic strain, £*, demonstrating the enormous degree of ductility in the
strain-softening zone for this material. With these values of n and 4 we can proceed to
cvaluate the moment-curvature constitutive law for the softened material by using moment
cquations of (5). (11a) and (23) for the three different regimes. Equations (5) and (23)
covering regimes (I) and (I11) are analytical. But because there is no closed form solution
for Z, eqn (1la) for .# must be computed numerically for the regime (II). A FORTRAN
subprogram has been developed to solve Z, the neutral axis location, for any given value
of k. The solutions are then used to compute .# from eqn (l1a). The final results are
presented in Fig. 5 as a curve plotted in .#-x space. The three stages are indicated in this
figure. The two ends of regime (I), X and Y, are shown to agree with the terminating point
and initiation point of regimes (I) and (II1), respectively, in terms of both magnitude and
slope, assuring the correctness of the numerical solution scheme developed for regime (I1).
For engincering applications it is often required to determine the maximum load-
bearing capacity of a given material. The peak load, P,,. or moment, .#,,. as shown in Fig.
5 for this polymer concrete is about 20% higher than the maximum elastic load. According
to the definition of normalized .# (i.e. 4 = M/!a,BH"?) and eqns (2). (5) and the one
immediately following eqn (5), the normalized peak load is identical to the peak moment,
namely
P, =P, P} =M, (24)
To examine the bending strengths for a varicty of materials with different scts of (n, 2)
values , the curves of normalized pecak moment, .#4,,, as a function of the softening exponent,
n, are plotted in Fig. 6 for three different values of 4. These curves show that increasing n
leads to higher peak loads approaching the limiting value of 3.0 which represents the
absolute maximum for bending strength. Reducing A while keeping n constant yiclds similar
results. This outcome can be physically explained in terms of the enhancement of the encrgy-
absorbing capabilitics for increasing n or reducing 4 (see Fig. 1). Figure 6 also reveals that
for strain-softening materials with # > 0.1, the ratio of bending strength to tensile strength
is always greater than unity, namely ./#,, > 1.0. These results are in good agrcement with
our experience in strain-softening materials like plain concrete. For *‘near™ non-softening
brittle materials with n < 0.1, the bending and tensile strengths are equal ; no enhancement
in bending strength is predicted.
Onc of our major objectives is to predict the flexural load-displacement curve from a
given stress—strain relation such as the curves shown in Fig. . Treating the curvature as an
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Fig. 6. Plot of strength enhancement in bending as a function of n for a trio of 4. Note that for
exceedingly small », no enhancement is predicted.

independent variable, the load and load-point displacement can be computed separately
from eqns (11), (23) and (17) for a given material with fixed values of n and 4, specimen
geometry and effective softened zone width 2w. Figure 7 presents the normalized £ vs §
curves for a trio of w in a special case wherein the material properties (n = 0.21, A = 0.0173,
£o = 0.0145) and beam geometry (L =4, [ = 1) are fixed. The points X and Y on each
curve divide the flexural behavior into the three regimes discussed carlier. It is interesting
to note that the deviation from linearity in the P-d curves at the commencement of regime
(ID) (i.e. point X) can be attributed to the development of the strain-softening zone, This
prediction is consistent with the conventional understanding of microstructure in which
microcracking introduces non-lincarity if #n exceeds 0.1. Further, this initial softening gives
rise to strengthening in flexurc as discussed carlier. Figure 7 also shows that the wider the
softening zone, the larger the load-point displacement for a fixed load. In practice, the
effective zone width 21 can be estimated from the measured bending P-d curve according
to eqn (27) to be discussed later. In any event, three representative curves are plotted here:
(1) forw = 0.15,dd > 0 throughout the test ; (2) W, = 0.09, dd = 0 somewhere on the curve

8 T T T
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\ I I ) §
~
~ -
0.0 L ! L
0.000 0.003 0.008 0.008 0.012

LOAD-POINT DISPLACEMENT, g =3m

Fig. 7. Bending load-deflection diagrams for a trio of ¥ showing how the softened zone size can
affect the load stability conditions (n = 0.21, 4 = 0.0173, ¢, = 0.0145, £=41T=1).
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Fig. 8. Stability map for three different n values. For a given beam geometry, a larger softened zone
provides a higher degree of stability ; conversely, for a given w, a longer beam span produces less
degree of stability (4 = 0.0173 and &, = 0.0145).

such that there exists a vertical tangent on the P-d curve; and (3) for w = 0.05, dé < 0 for
a portion of the curve indicating the test will be unstable for displacement-controlled loading
conditions under which déd has to be positive. In this last case, the part of the curve for
which dd < 0 cannot be recorded and instability (i.c. a sudden drop in load) will result.
This prediction seems o agree with P-8 curves observed on mortar beam specimens using
a new loading system where the controlling parameter is the differential signal between a
load and a displacement (Rokugo et al., 1986 ; Carpinteri, 1985).

To further understand the stability conditions, a comprehensive map (Fig. 8) can be
constructed where areas of stable and unstable regions in the W/ space are separated by a
critical border line depending on the material parameter n, Three interesting results are in
order. Firstly, for a fixed w larger beams spans yield less degree of stability presumably
because kirger beams spans store more elastic encrgy. This is consistent with the exper-
imental observations of P-J bending curves on mortar (Carpinteri, 1985; Rokugo er /.,
1986). Secondly, for a fixed value of s, the boundary separating these two areas is a straight
line. Finully, the boundary line corresponding to n = 0.5 has the least slope meaning a
material with a softening exponent of one hall will provide the most stable loading con-
ditions since this case generates the largest stable area on the map.

The evolution of the crack and strain-softening zone growth as the load-displacement
is increased can now be studied using eqns (21b) and (2ic). Take polymer concrete (i.e.
n =021, A =0.0173) as an example, we plot in Fig. 9 the depth of the strain-softening
zone (Z}, the nominal and effective crack lengths, a and a*, as a function of the curvature
k. It is scen that «* is rising rapidly at the initial stage and then tapers off as the curvature
increases to values higher thun unity. Thence onwards a hinge mechanism is effectively
activated under which deformation is allowed to continue without changing the load
substantially. Real crack growth does not take place until the softened zone has grown well
over 90% of the beam depth (in this particular example chosen). Once the crack is initiated
at the tensile edge it grows rapidly while the softened zone is predicted to decrease.

The conventional fracture toughness, X, of a beam as a function of effective crack
length,t a*, can also be calculated using eqns (22). Figure 10 gives such a **R-curve™ where
K, is seen to increase gradually from zero to a peak value at about 10 times g,,,/H, and
then to decrease rapidly to zero] as the crack grows across the beam depth. The latter is a

T Here, we treat the softening zone as a non-linear fracture process zone ahead of the real crack tip. Linear
elastic fracture mechanics formulae can still apply by calculating X, at the tip of the softened zone.
1 It can be shown mathematically from eqn (22b) that limgt ¥{a) = 0 so that K; = O when a = H.
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Fig. 9. Growth of Z, a and a* as a function of x forn = 0.21 and 4 = 0.0173.

manifestation of the decreasing load required coupled with the constraint placed on the
growth of the softening zone by the free boundary of the back face of the beam.

3. THE INVERSE PROBLFM

3.1, Extracting tensile properties from bending curve

Thus far, we are able to predict the bending load-deflection curve when the geometry
and a-¢ laws of the beam, including the softening zone width, are given. We now raise a
practical issue : can we solve the inverse problem? That is, given a flexural load—displacement
curve, can we obtain the materials’ strain-softening response in tension? This problem is of
significant importance as mentioned in Scction 1. For if it is possible, we need only do the
simple bending experiments as opposed to the far more complicated tensile test in order to
extract the tensile softening properties, which in turn may be used for structural analyses.

From the flexural P-d curve measured in the laboratory, we can obtain the following
quantities: (1) P, the point of deviation from the linear curve of regime (I); (2) P, the

10.0 |~ -

~

NORMALIZED TOUGHNESS, K,

] 1 ] L
0.0 ¢.2 0.4 0.6 0.8 1.0

EFFECTIVE CRACK LENGTH, a%-(a+2)

Fig. 10. Evolution of fracture resistance in regime (I111) for n = 0.21 and 4 = 0.0173, indicating R-
curve behavior.
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peak load ; (3) the entire tail curve in regime (111); (4) PJ\. the point of departure from the
tail curve in regime (I111) as defined by eqn (25); and (5) the corresponding displacement
d%. The information from (1), (2) and (4) provides the values of the normalized moments
M, and 4. The information from (3) gives a clue as to the applicability of the present
theory because it predicts the P--d curve to assume the following quadratic form :

P = Felwi(L-1)?8* (25)

based on eqns (17) and (23). Indeed, Yan (1988) of AT&T Bell Laboratories has plotted
the post-peak P-d curve of a fiber-reinforced glass preform on a log-log paper and found
that a portion of the data at the tail end did decay lincarly with a slope of —2.2 which is
close to the theoretical value of —2 according to eqn (25). Furthermore, he was able to
locate the point Y separating regimes Il and I11 as defined in Fig. 5 at the point of deviation
from the straight line.

Now from Fig. 6, we have the following numerical relation

My = f(4,.n)

and from cqn (13a),
MY = F(1+/G)".

These two equations form a system of non-linear algebraic equations for the unknown
paramcters A and n. The task is to solve them as a function of .#, and .#{ which are
prescribed by the test data. Because of the lack of an analytical expression for the first
equation, the problem is solved numerically by the Newton-Raphson iterative method. In
general, unique solutions are not guaranteed for non-lincar problems. However, numerical
searching in the range of physical interest, namely P§/PF = 0.1 ~ 0.7, reveals that unique
solutions cxist in this range. Figures 11 and 12 give the solution for nand 4 for P§j/P* = 0.3,
0.4 and 0.5, respectively. From Fig. 11, it is noted that n varies in a narrow range between
0.2 and 0.4. Furthcrmore, for a given valuc of P}/ P, the peak load P, is very sensitive to
changing n. Conversely, the solutions for 1 vary widely from 0.5 down to 10~ when the
normalized pcak loads increase from 1.0 to 2.2, Fig. 12. In the following Section 3.2, we
demonstrate the use of these solutions in an example, where the flexural P-d curves are
measured, 50 as to obtain the simple tension behavior of the particular material. Once n
and 4 are determined, the complete tensile 6—¢ curve including o,,, £* and ¢, can be obtained

S 25:112-F
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from the information gathered at Py*. To convert the tensile o—¢ relation to the 6-9 curve,
the softening zone width w, in tension is required. To estimate w,, consider a tensile specimen
of unit cross-sectional arca containing a localized strain-softened zone width w,, energy
balance at fracture requires that G, = w, | o de. Integration of the g—¢ curve on the softening
part, assuming the elastic portion is negligible, gives

w, = G, (n+ D)/(1 = )anton. (26)

The crack opening displacement § is simply related to the effective strain ¢ within the
fracture process zone by § = ew, and the complete tensile 6-J curve is thus obtained.

It should be pointed out that although w in bending and w, in tension may have the
same order of magnitude, say a few millimeters, they are not necessarily equal because w,
is material dependent only [see eqn (26)] while w may also involve specimen geometry and
loading contiguration [sce eqns (17) and (27) below]. Given &% from the measured P-6
curve in a bending experiment, the effective softened zone width 2w can be estimated at
that point on the curve. Thus, for § = 3, eqn (17) then gives

w = HORN(L—D(1+/G)ey —3AF(L* +20° = LI*) /(1 +/G) (L-1)*. 27

[tis seen that if i, £, and & « 1, the bending softening zone width is then linearly dependent
on 3.

3.2. Example on polymer concrete

Here we use polymer concrete as an example to demonstrate the procedure of extracting
the tensile softening behavior from the laboratory measured load-deflection curve in
bending. Flexural load-displacement diagrams for a polymer concrete have been previously
obtained (Krause. 1980; Krausc and Fuller, 1984). To deduce the tensile 6-& curve from
P-4 curves measured by a four-point bend method, the first step is to obtain a pair of (n, 1)
from Figs 11 and 12. The required information are P,,, Pf; and P from the load—deflection
diagram. For the polymer concrete studied by Krause and Fuller (1984), the values of P,
and the ratio Pj}/P®* are estimated to be 1.2 and 0.3, respectively. Thus, from Fig. 1] we
obtain n = 0.2 and from Fig. 12, 4 = 0.0173. The next step is using the information on P?
and 6 obtained and the known beam geometry to calculate ¢,, and ¢* from eqns (2) and
(3). This gives ¢, = 19.4 MPa and &* = 250 u strain. The complete o—¢ curve in tension
including the post-peak region is now determined. To obtain stress-displacement curve in
tension, we need to know the softening zone width w,. So the final step is to calculate w,



Flexural behavior of strain-softening solids 1431

from a given G, according to eqn (26). Assuming G, = 50 J m~? for the polymer concrete
(Krause and Fuller, 1984), the zone width w, is then calculated to be about 1.05 mm. With
w, known. we are able to convert the g—¢ curve into the 6—J curve, since & and ¢ are related
by & = w,e. Unfortunately, no data on the 6—4 curve are available for the polymer concrete
so that verification of this prediction cannot be made at this time. However, the peak load
6., = 19.4 MPa predicted is in very good agreement with the tensile strength data of 18 +2.4
MPa measured by Krause (1980) using the direct splitting technique.

4. SUMMARY

We have presented a detailed investigation into the flexural behavior of a composite
beam containing a localized strain-softening zone. Three characteristic regimes are identified
for increasing strain conditions : (I) elastic (II) strain-softening zone growth and (III) crack
growth. It is shown that enhanced bending strength occurs at regime (II) provided the
strain-softening exponent (n) exceeds 0.1 and that the softening zone width (2w) has a
significant influence on the load stability in bending experiments. The fracture resistance is
also shown to increase in regime (I[l) as a function of crack length consistent with the
conventional R-curve concept.

We also presented the solutions for the inverse problem, namely, the determination of
the stress—displacement relations in simple tension from simple bending data. The solution
depends on two load ratio measurements ; P.and P}/ P An example on polymer concrete
is employed to illustrate the step-by-step procedure in the acquisition of the final 69
relationship in tenston. We belicve that the present work provides a simple but very useful
technique to characterize a class of strain-softening solids which obey the constitutive law
given in eqn (1). Obviously, much future experimental work is required to substantiate the
theoretical analysis.
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APPENDIX A: RANGE OF XY IN REGIME I
We wish to derive here the range (i.e. the upper and lower limits) of the clastic tensile zone size X (see Fig.

2). At the end of regime 11 the strain at the outer tensile fiber must be &, so that a major crack is about to initiate
there. Designating ¥ as the total tensile zone size, ¥ = Y+ 7, we have

4 -
AT
K=iim o

X r
Hence,
x = Ay {AD)

since 4 = £*/e,. Horizontal force balance then requires that

lela,ix = 6,x/2+ oy —x}

”
n+ i
or
A= 1, 2::.\'( 9
- = ()
! n+1 Y

By noting that x = 4y from eqn (A1), these results are simplified to
x=i/(1+/G) (A2)
where G has already been defined in eqn (8) of the text,
On the other hand, at the beginning of regime H or at the end of regime |, 2 = 0 and x = ¢ = {so that neutral

axis is still at, but about to move from, the center of the cross-section.
Hence we have derived the limits of x in regime [ to be as follows

<x<!

;A -
1+ /G

as indicated in eqn (7a) of the text.

APPENDIX B: DERIVATION OF EQN (2))
Referring to Fig. 4(b). the tensile zone size, 4, is given by
t=go/K {(81)

owing to strain lincarization. Also, from Fig. 4(c), it is clear that a relationship between o, and o, can be
established :
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a./c = a,lit. (BY)
The total compression force per unit thickness of the beam acting on the section is
F.jB=lo.c=lo.c*lit (B3)

after substituting ¢, from eqn (B2). On the other hand. the total tension force per unit thickness of the beam
acting over the whole section is

n
B lg it .
F./B=lo,At+ n+lﬂ"'(l A (B4

after integration of tensile stresses over both the linear and non-linear parts. Equating the above two equations,
owing to the requirement of equilibrium we obtain
c=(JG) ¢ (B5)
where G is defined by eqn (8).
In addition, the equilibrium conditions also demand that internal moment be counter-balanced by the applied

moment. Thus. by taking the moment at the neutral axis for internal stresses and equating this to the applied
moment M, we have

no.(1-)\ . (a+D(1—=A)n
n+l )[M+ 2n+2) ]

M B=(F./B): §c+§(!a,,,lzl:)+<
Substitution of ¢ from eqn (BS), ¢ from cqn (B1) and F, from cyn (B3) into the above equation gives

2G 1-4)° .
M/(\BHH a,) = [J—A‘/—G +3G-it+ u]// (KH/es)*

n+2

or
MH = Fix* (B6)

where Fis defined by egn 13(b). Equation (B6) is then equal to eqn (23) in the text.



